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Traditional methods for carrier synchronization of uncoded binary phase-shift-
keyed (BPSK) signals, e.g, conventional and polarity-type Costas loops, data-aided
loops, demodulation–remodulation loops, etc., are obtained from approximations
made to a closed-loop structure motivated by the maximum a posteriori (MAP)
estimation of carrier phase. Inherent in all of these loops is the fact that their input
data are assumed to be equiprobable (balanced) independent identically distributed
(i.i.d.) binary sequences, and the MAP estimation loop from which these various
structures are derived is predicated on this fact. The tracking performance limita-
tion of such loops is the so-called squaring loss associated with the mean-squared
phase error, which is the result of signal and noise products created by the necessity
to remove the data modulation from the loop error signal. By reducing the amount
of randomness (information) in the data that are input to the carrier synchronizer
(hence the term information-reduced carrier synchronization), yet maintaining their
i.i.d (but not necessarily balanced) property and also their independence of the ad-
ditive noise, and then suitably modifying the synchronizer structure in accordance
with this data reduction, one can obtain a significant squaring-loss improvement
relative to what is achievable with the above-mentioned structures. One method
for accomplishing this reduction in data randomness is through the use of deci-
sion feedback at the input of the loop structure, which should be contrasted with
conventional structures such as the data-aided or polarity-type Costas loops that
use decision feedback within the loop structure itself, and hence do not modify the
structure based on the amount of information reduction achieved. While applying
such a method to uncoded modulations will not satisfy the noise independence con-
straint on the modified data sequence (for reasons explained in the article), for coded
modulations, we show that it is indeed possible to approximately satisfy both the
i.i.d and noise independence conditions and, thus, to achieve the above-mentioned
gains. Although the article focuses on binary modulation, the concepts and re-
sults are easily extended to multiple phase-shift-keyed (M-PSK) modulations with
M ≥ 4.

1



I. Introduction

Optimum closed-loop structures for tracking the phase of binary phase-shift-keyed (BPSK) signals
as well as unmodulated carriers have been derived in the past based on maximum a posteriori (MAP)
estimation criteria [1–3]. These structures have been shown to take the form of feedback loops that
attempt to null the difference between the true input phase and its estimate produced by an oscillator in
the loop. It has been customary in the past to distinguish between unmodulated and modulated carriers
before deriving the optimum closed-loop structures, the former leading to a phase-locked loop (PLL)
and the latter leading to an in-phase–quadrature (I-Q) loop with a hyperbolic tangent nonlinearity in its
in-phase arm.

It is well known that PLLs attain a phase error variance that, in the limit of large loop signal-to-noise
ratio (SNR), varies as the inverse of this loop SNR, whereas I-Q loops suffer an additional degradation
because of the inherent multiplication required to produce an error signal in the I-Q structure. This
multiplication of the I and Q signals results in the generation of signal and noise cross products, which
leads to a loop SNR penalty (i.e., multiplication of the loop SNR by a factor less than unity) generically
referred to as squaring loss. At low symbol SNR,1 the squaring-loss degradation associated with I-Q
loops can be severe, often prohibiting the ability to track. This suggests that substantial improvements
may be possible if somehow one could convert the received modulated carrier to a pure (unmodulated)
tone before applying it to the phase-tracking loop, since this would then allow use of a PLL which, as
mentioned above, has no associated squaring-loss penalty.

In principle, an uncoded BPSK signal could indeed be converted to a pure tone if the data sequence
were completely known, simply by multiplying the BPSK signal by the data waveform. Short of complete
knowledge of the data waveform and in the presence of noise, the next best attempt at arriving at a
“pure” input tone would be to feed back decisions (estimates) made on the data symbols. Referring
to Fig. 1, the above statements can be put into mathematical terms as follows. Denoting the received
signal plus noise waveform by x (t; ak, θ), where ak is the kth data symbol taking on values ±1 with equal
probability and θ is the unknown carrier phase to be estimated, it follows that if a perfect estimate,
âk, of the data were available, so that âk = ak, then the product of ak and âk would always be unity
and the data modulation would in effect be removed from the signal input to the carrier synchronizer.
Implicit in the previous statement is the assumption that accurate symbol synchronization has already
been established and that data estimation delays have been accounted for by means of the signal delay,
∆, prior to the multiplication operation. In the absence of this ideal situation, the product of ak and
âk forms an error sequence, ek

4= akâk, with statistics based on the probability, p, assigned to the error
event, âk 6= ak. Thus, ignoring for the moment the effect of this data estimate multiplication on the noise

m (t – ∆ ) = Σ ak 
p (t – kT – ∆ )
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Fig. 1.  Receiver with information-reduced carrier phase estimation.

1 We use the term “symbol” rather than “bit” to include the case of coded data that will be our main focus of interest.
Furthermore, it should be noted that assumption of low symbol SNR does not necessarily invalidate the assumption of
high loop SNR.
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component of x (t; ak, θ) (which, as we shall see shortly, is an important consideration and is, in fact,
what prevents this scheme from being successful for uncoded modulations), the input to the loop has
been transformed into y (t; ek, θ), whose signal component now represents the carrier modulated by the
error sequence instead of the original data sequence. Assuming that the data estimates are independent
and identically distributed (i.i.d.) (as would be the case for uncoded data), then the error sequence {ek}
is an unbalanced i.i.d. sequence with the data estimate error probability, p, now also representing the
probability that ek takes on a value equal to −1. Hence, a value of p = 0.5 results in a balanced i.i.d.
sequence and, thus, the feedback provides no advantage, whereas a reduction in the value of p to p = 0
would result in an all-ones input sequence, i.e., an unmodulated carrier. The degree to which p can be
reduced from its nominal value of p = 0.5 depends on the nature of the data estimator (detector), which
for uncoded data would be a matched filter followed by a hard decision threshold device.

If it were not for the effect of the decision feedback on the noise component of the received signal
that is input to the loop, then modification of the loop structure in accordance with MAP theory based
on the changed data sequence statistics discussed above should yield an improvement in performance.
Again, this would occur because any unbalance (tilt) in the received data statistics, i.e., p other than
0.5, brings the signal component of the received signal closer to a “pure” tone, which intuitively should
allow phase estimation with a smaller squaring loss. Unfortunately, for bit-by-bit detection of uncoded
BPSK with a matched filter, each data decision that is output from the hard decision threshold device
is based on the same symbol interval of noise as the corresponding interval of noise in the received
signal that gets multiplied by this decision. Stated another way, the error statistic, ek

4= akâk (which
of course contains the decision âk), corresponding to the kth transmission interval is totally correlated
with the noise component of x (t; ak, θ) during that same time interval and, thus, the assumption of a
modified data sequence input to the loop that is independent of the additive noise is invalid. Indeed,
we shall show later on (in the Appendix) that, for the configuration of Fig. 1 when implemented for
uncoded BPSK,2 because of the above-mentioned data sequence and noise correlation, the squaring loss
performance cannot be improved relative to the well-known conventional techniques. We have decided
to include the analysis that establishes this fact, even though our interest is focused on applying the
information-reduction scheme to coded data, in order to inform the reader of the lack of utility of this
scheme in the uncoded data application.

Suppose now that the BPSK symbols correspond to encoded data and the decisions result from, say, a
convolutional (conventional or iterative) decoder. Then a memoryless data model for the error sequence
at the phase tracking loop input is strictly speaking inappropriate. If the joint statistics of the input
symbols were known as well as the actual decisions statistics, then, in principle, the structure of the MAP
estimator could be derived. However, the mathematics would become intractable and, thus, it behooves
us to find a way to justify the i.i.d. and noise independence assumptions for the error sequence. One
simple way of validating the i.i.d assumption is to preprocess (e.g., interleave) the data input to the
carrier synchronizer and at the same time perform the same preprocessing of the data being fed back
from the decoder in such a way as to randomize the error sequence. We point out that such processing
of the data and data feedback used as input to the carrier synchronizer does not affect the actual data-
decoding process since this is performed external to the carrier synchronization operation. To validate
the assumption that the components of the error sequence are approximately independent of the additive
noise in the corresponding transmission intervals (a situation that, as mentioned above, is not possible
for the uncoded data case), we argue as follows: In a coded system, the decisions on the data information
bits (or equivalently on the encoded data symbols, as are needed for the carrier synchronizer), are made
based on an observation interval of the received signal much longer than a single transmission interval.
For example, in a convolutionally encoded data system, the output decision of the maximum-likelihood
(ML) decoder, e.g, the Viterbi decoder, is obtained from the first bit of the current ML sequence whose
length corresponds to a number of code constraint lengths sufficient to have all surviving paths converge

2 Note that in this case the delay ∆ becomes equal to the bit time T .
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at their origins.3 Thus, the noise that determines this ML sequence decision and, hence, the decision on
the first bit (or equivalently the first encoded symbols) in this sequence is virtually uncorrelated with the
noise in the same first transmission interval.

Assuming the above unbalanced i.i.d models, the next section derives the open-loop MAP estimator
of carrier phase and the closed-loop carrier synchronizer motivated by this approach.

II. MAP Estimation of Carrier Phase for BPSK With Unbalanced Data

Consider the estimation of carrier phase for uncoded BPSK signals with unbalanced data in the
presence of additive white Gaussian noise (AWGN). To begin, the received signal is of the form

s(t; θ) =
√

2Sm(t) sin (ωct+ θ(t)) (1)

while the additive noise has the narrowband representation

n(t) =
√

2 [Nc(t) cos (ωct+ θ(t))−Ns(t) sin (ωct+ θ(t))] (2)

The carrier in Eq. (1) has power S, radian frequency ωc, slowly varying phase θ(t), and is modulated by
a random pulse train

m(t) =
∞∑

k=−∞
akp (t− kT ) (3)

where p (t) is a unit power rectangular pulse of duration T seconds and {ak} is a binary (±1) equiprob-
able data sequence assumed to be i.i.d. The noise process in Eq. (2) is modeled in terms of a pair of
independent, low-pass Gaussian processes, Nc(t) and Ns(t), each with single-sided power spectral density
(PSD) N0 W/Hz and bandwidth BH < ωc/2π.

In accordance with Fig. 1, the received signal plus noise, x (t; ak, θ), is delayed by an amount ∆ and
then multiplied by the data estimator waveform

m̂(t−∆) =
∞∑

k=−∞
âkp (t− kT −∆) (4)

where {âk} denotes the sequence of binary (±1) data estimates. Assuming, as previously discussed, that
this sequence of estimates is i.i.d. and has the probability statistics

Pr {âk 6= ak} = p

Pr {âk = ak} = 1− p

 (5)

3 It is envisioned for such applications that the symbol decision feedback could be obtained by storing the encoded symbol
history of the survivor paths associated with the decoding algorithm rather than the input history normally associated
with these paths. This soft symbol decision information would then be fed back synonymously with the time at which
one would normally start making bit decisions with the decoder, in which case the delay ∆ in Fig. 1 would be set equal
to the decoder delay.
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where p represents the error probability of the data estimator, then the result of the product of x(t−∆)
and m̂(t−∆) can be modeled as4

y (t) =
√

2Se(t) sin (ωct+ θ(t)) +N(t) (6)

where

e(t) =
∞∑

k=−∞
ekp (t− kT ) (7)

is a modified data modulation that reflects the errors in the detection of the input data sequence, i.e.,
{ek} is a binary (±1) i.i.d. sequence with probability statistics5

Pr {ek = −1} = p

Pr {ek = 1} = 1− p

 (8)

and N(t) 4= m̂(t)n(t) is an additive noise process that is Gaussian in each T -second interval with statistics
identical to n(t) and, based on the arguments previously given for the coded application, is independent
of the data.

The combined signal plus noise in Eq. (6) is observed for K data intervals, i.e., over the interval
0 ≤ t ≤ KT . Assuming that the carrier phase θ(t) remains constant over this observation interval, then
based on this observation and knowledge of S, p(t) and ωc, the MAP estimate of phase is that value
θ̂MAP that maximizes the conditional probability density function p (θ|y(t)), or equivalently p (y(t)|θ),
since θ(t) = θ is assumed to be uniformly distributed. The solution to this problem when p = 1/2 is well
known and is given by

θ̂MAP = max
θ

−1 ln Λ (θ) (9)

where ln Λ (θ) is the logarithm of the likelihood function derived from p (y(t)|θ) and is given by

ln Λ (θ) = ln
K−1∏
k=0

cosh ysk (θ) =
K−1∑
k=0

ln cosh ysk (θ) (10)

where

ysk (θ) 4=
2
√

2S
N0

∫ (k+1)T

kT

y(t) sin (ωct+ θ) p(t)dt (11)

4 In what follows, we ignore the delay ∆ (i.e., set it equal to zero) since its value has no bearing on the derivation that
follows. Also, for simplicity of notation, we herein use y(t) instead of y(t; ek, θ).

5 In reality, the error probability of the decisions being fed back will be dependent on the tracking performance of the carrier
synchronization loop itself since indeed the phase of the in-phase demodulation reference signal (the output of the phase
tracking loop in Fig. 1) is an input to the data detector. For the moment, we ignore this effect since, as discussed later
on, for large loop SNR, which is the case of interest, this is a second-order effect.
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The “cosh x” form in Eq. (10) is obtained by averaging the conditional probability p (x(t)|θ, ek), which
from the AWGN assumption has an exponential form, over the equiprobable (p = 1/2) i.i.d. data se-
quence {ek}. When this sequence has the unbalanced statistical properties of Eq. (8), then the analogous
expression to Eq. (10) becomes

ln Λ (θ) =
K−1∑
k=0

ln [(1− p) exp (yk(θ)) + p exp (−yk(θ))]

=
K−1∑
k=0

ln [exp (yk(θ))− 2p sinh yk(θ)] (12)

Since, from Eq. (9), θ̂MAP is the value of θ that maximizes the log likelihood function of Eq. (12), an
equivalent statement is that θ̂MAP is the value of θ at which the derivative of Eq. (12) has zero value
(and the second derivative is negative). For estimates θ̂ of θ in the neighborhood of θ̂MAP , the derivative
of the log likelihood function will be positive or negative in accordance with the sign of θ̂ − θ̂MAP and,
thus, this derivative can be used as an error signal in a closed-loop synchronizer to steer the loop in the
direction of a locked condition corresponding to θ̂ = θ̂MAP .

Taking the derivative of Eq. (12) with respect to θ gives

∂

∂θ
ln Λ (θ) =

K−1∑
k=0

(1− p) exp (ysk(θ))− p exp (−ysk(θ))
(1− p) exp (ysk(θ)) + p exp (−ysk(θ))

yck(θ)

=
K−1∑
k=0

exp (ysk(θ))− 2p cosh ysk(θ)
exp (ysk(θ))− 2p sinh ysk(θ)

yck(θ) (13)

where, by analogy with Eq. (11),

yck (θ) 4=
2
√

2S
N0

∫ (k+1)T

kT

y(t) cos (ωct+ θ) p(t)dt (14)

Defining the zero memory nonlinearity

fp (x) 4=
(1− p) exp (x)− p exp (−x)
(1− p) exp (x) + p exp (−x) =

exp (x)− 2p coshx
exp (x)− 2p sinhx

(15)

then the closed-loop carrier synchronizer motivated by the above MAP estimation procedure is as illus-
trated in Fig. 2.6 We herein refer to this loop as the MAP estimation loop for BPSK with unbalanced
data. A similar result was obtained in [4], where it was also shown that the nonlinearity of Eq. (15) can
be expressed in the form of a biased hyperbolic tangent function, namely,

6 In Fig. 2, the nonlinearity is shown as fp̂(x) since, in an actual implementation, p̂ is an estimate of the true value of p as
determined from measurements made on the receiver. Furthermore, in reality, p̂ depends on the loop phase error and the
detection SNR, Rd. Later on in this article, we discuss these dependencies as well as the effect of a mismatch between p̂
and p. For the moment, we set p̂ = p.
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fp (x) 4= tanh
(
x− 1

2
ln

p

1− p

)
(16)

In the next section, we analyze the tracking performance of this loop in terms of its mean-squared
phase error.

Fig. 2.  Information-reduced carrier synchronization loop.
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III. Tracking Performance of the MAP Estimation Loop for BPSK With
Unbalanced Data

Consider the MAP estimation loop for phase synchronization of BPSK with unbalanced data illustrated
in Fig. 2. Since this loop was derived based on the assumption of an input i.i.d. “data” sequence {ek}
with probability statistics Pr {ek = −1} = p, Pr {ek = 1} = 1− p, we continue to use this signal model
in assessing its performance. The analysis of the tracking performance of the loop in Fig. 2 parallels the
approach taken in [1] for a similar loop with a hyperbolic tangent nonlinearity. We note, however, that
there are some significant differences between the two analyses since several of the steps carried out in [1]
depend upon the nonlinearity (e.g., hyperbolic tangent) being an odd function of its argument, which is
not the case for the nonlinearity fp(x) (except when p = 1/2, in which case fp(x) = tanhx).

Denoting the input I and Q phase detector (multiplier) gains by Km, then the sample-and-hold outputs
zc(t) and zs(t) of Fig. 2 are given by

zc(t)
4=
∫ (k+1)T

kT

y(τ)rc(τ)dτ = Km
2
√
S

N0

[
T
√
Sek sinφ−N2 sinφ+N1 cosφ

]

zs(t)
4=
∫ (k+1)T

kT

y(τ)rs(τ)dτ = Km
2
√
S

N0

[
T
√
Sek cosφ−N1 sinφ−N2 cosφ

]
;

(k + 1)T ≤ t ≤ (k + 2)T


(17)
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where N1 and N2 are zero-mean, independent Gaussian random variables7 with variance σ2
N1

= σ2
N2

=
N0T/2

4= σ2, and φ(t) 4= θ(t)− θ̂(t) is the loop phase error8.

Multiplying zc(t) by the nonlinearly processed zs(t) gives the dynamic error signal

zo(t) = zc(t)fp (zs(t))

= Km

[
(2Rd) ek sinφ−

√
2RdX2 sinφ+

√
2RdX1 cosφ

]

× fp
(
Km

[
(2Rd) ek cosφ−

√
2RdX1 sinφ−

√
2RdX2 cosφ

])
;

(k + 1)T ≤ t ≤ (k + 2)T (18)

where fp(x) is the nonlinearity defined in Eq. (15) that depends on the probability statistics of the input
data sequence, i.e., the parameter p. Also, in Eq. (18), we have defined the detection signal-to-noise
ratio (symbol energy-to-noise ratio for a coded data system) by Rd

4= ST/N0 and the normalized (unit
variance) Gaussian noise variables by Xi

4= Ni/σ; i = 1, 2.

It has been shown [1,2] that the tracking performance of a loop such as that in Fig. 2 can, in its
linear region of operation (small phase error), be determined by examining the equivalent signal and
noise components of the zo(t) process, more specifically, the slope of the equivalent S-curve at φ = 0 and
the variance of the equivalent additive noise. This makes the usual assumption that the loop bandwidth
is much less than the data bandwidth.

Since X1 and X2 are zero-mean random variables, then from Eq. (18), the signal component η(t) of
zo(t) is9

η(φ) = (2Rdek sinφ) fp
(
2Rdek cosφ−

√
2RdX1 sinφ−

√
2RdX2 cosφ

)X1,X2,ek

(19)

where the overbar denotes statistical averaging over the distributions of the random variables indicated.
The slope Kη of this S-curve at the origin is obtained from

Kη =
dη(φ)
dφ
|φ=0 = (2Rdek) fp

(
2Rdek −

√
2RdX2

)X2,ek

= 2Rd

[
(1− p)fp

(
2Rd −

√
2RdX2

)X2

− pfp
(
−2Rd −

√
2RdX2

)X2
]

= 2Rd

[
(1− p)fp

(
2Rd −

√
2RdX2

)X2

− pfp
(
−2Rd +

√
2RdX2

)X2
]

(20)

7 Note that, as previously mentioned, multiplication of a Gaussian process n(t) by a binary (±1) waveform of rate 1/T does
not change the Gaussian properties of the original process within any T -second time interval. Thus, for any input bit, the
corresponding sample-and-hold outputs of the integrate-and-dump (I&D) filters are still Gaussian random variables.

8 For notational convenience, we herein delete the dependence of φ(t) on t.
9 For simplicity, we further set Km = 1.
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where the latter equality stems from the fact that averaging over a zero-mean Gaussian random variable is
equal to averaging over the negative of that variable. We should also point out the following in Eq. (20): In
an actual implementation, p would itself depend on the loop phase error (since the data decisions being
fed back to the input of the loop depend on the phase of the in-phase carrier demodulation reference
derived from the loop). However, since the slope of the S-curve is evaluated at φ = 0, then the value of
p needed in Eq. (20) is the value at φ = 0, i.e., the ideal performance of the data detector. Thus, the
dependence of p on φ is irrelevant to the evaluation of the S-curve slope. While we could denote the value
of p at φ = 0 as p0 in Eq. (20), for simplicity we shall maintain the notation p, keeping in mind the above
interpretation. We do remind the reader, however, that for an actual implementation, p is a function of
Rd.

The noise component of zo(t) (evaluated at φ = 0) is

Ne(t) =
√

2RdX1fp

(
2Rdek −

√
2RdX2

)
(21)

Since X1 and X2 are independent and have unit variance, then the variance σ2
Ne

of Ne(t) is from Eq. (21):

σ2
Ne = 2Rd

[
(1− p)f2

p

(
2Rd −

√
2RdX2

)X2

+ pf2
p

(
−2Rd −

√
2RdX2

)X2
]

= 2Rd

[
(1− p)f2

p

(
2Rd −

√
2RdX2

)X2

+ pf2
p

(
−2Rd +

√
2RdX2

)X2
]

(22)

Here again the value of p needed in Eq. (22) is the value at φ = 0, which is consistent with the previous
usage of the same parameter in Eq. (20) for the slope of the S-curve.

Because of the sample-and-hold circuits in Fig. 2, the noise process Ne(t) of Eq. (21) is piecewise
constant over intervals of T -second duration, in particular, T ≤ t ≤ 2T . Thus, as long as the loop
bandwidth is much less than the data bandwidth, this process can be approximated, as had been done
in [1,2], by a delta-correlated process with the correlation function given by

RNe (τ) 4= Ne(t)Ne (t+ τ) =

σ2
Ne

[
1− |τ |

T

]
; |τ | ≤ T

0; |τ | > T

(23)

and equivalent single-sided noise spectral density

N
′

0
4= 2

∫ ∞
−∞

RNe(τ)dτ = 2σ2
NeT

= 4RdT
[
(1− p)f2

p

(
2Rd −

√
2RdX2

)X2

+ pf2
p

(
−2Rd −

√
2RdX2

)X2
]

= 4RdT
[
(1− p)f2

p

(
2Rd −

√
2RdX2

)X2

+ pf2
p

(
−2Rd +

√
2RdX2

)X2
]

(24)
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The linearized phase error variance is given by

σ2
φ =

N
′
0BL
K2
η

4=
1
ρSL

(25)

where ρ 4= S/N0BL is the linear loop (PLL) signal-to-noise ratio and, analogous to conventional Costas
loop terminology, SL is the “squaring loss,” which reflects the penalty paid due to the signal and noise
cross products present in zo(t). Substituting Eqs. (20) and (22) in Eq. (25), the squaring loss can be
identified as

SL =

[
(1− p)fp

(
2Rd −

√
2RdX2

)X2 − pfp
(
−2Rd +

√
2RdX2

)X2
]2

(1− p)f2
p

(
2Rd −

√
2RdX2

)X2
+ pf2

p

(
−2Rd +

√
2RdX2

)X2
(26)

Note that for p = 1/2, Eq. (25) reduces to

SL =

[
tanh

(
2Rd −

√
2RdX2

)X2
]2

tanh2
(
2Rd −

√
2RdX2

)X2
(27)

which is in agreement with Eq. (18) of [2]. Although the statistical averages required in Eq. (26) cannot
be performed analytically, they are easily evaluated numerically using Gauss–quadrature techniques.

IV. Approximate Behavior at Low SNR

It is of interest to examine the behavior of the data-reduced carrier synchronization scheme at low
SNR (small symbol energy-to-noise ratio) since this is the region where the squaring loss associated
with conventional carrier synchronization schemes is large and thus limits their performances. Since the
outputs of the I&D filters in Fig. 2 are proportional to Rd, then for small values of this parameter, one can
approximate the in-phase arm nonlinearity of Eq. (15) by its expression for small values of its argument,
namely,

fp(x) ∼= 1− 2p+
[
1− (1− 2p)2

]
x = 1− 2p+ 4p(1− p)x (28)

which is a linear function with a bias and slope that depend on the input data probabilities and is
consistent with Eq. (9) of [4]. Corresponding to this approximation of the nonlinearity, the slope of the
S-curve at the origin, as defined in Eq. (20), can be evaluated analytically and becomes

Kη
∼= (1− 2p)2 2Rd +

[
1− (1− 2p)2

]
4R2

d (29)

Similarly, the equivalent noise spectral density of Eq. (24) becomes, for low SNR,

N
′

0
∼= 4RdT

{
(1− 2p)2 + 4Rd (1− 2p)2

[
1− (1− 2p)2

]
+ 2Rd (2Rd + 1)

[
1− (1− 2p)2

]}
(30)
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Substituting Eqs. (29) and (30) in Eq. (25), we obtain, after considerable simplification, the closed-form
result

SL =

2Rd +
(1− 2p)2

[
4Rd − (1− 2p)2 (4Rd − 1)

]
2Rd

[
1− (1− 2p)2

]2
2Rd + 1 +

(1− 2p)2
[
4Rd + 1− (1− 2p)2 (4Rd)

]
2Rd

[
1− (1− 2p)2

]2
(31)

The limiting values of Eq. (31) for p = 1/2 and p = 0 are

SL =


2Rd

2Rd + 1
; p =

1
2

1; p = 0
(32)

which agree with the well-known results for the conventional Costas loop with I&D arm filters when
tracking an uncoded BPSK modulation and the PLL, respectively.

The limiting value of Eq. (31) for Rd → 0 will also be of interest later on in relation to a more traditional
decision feedback scheme derived from ML considerations applied to a received signal with a correlated
data sequence. In particular, it is straightforward to show from Eq. (31) that, for the information-reduced
scheme of Fig. 2,

lim
Rd→0

SL = (1− 2p)2 (33)

Also, since SL is a monotonically increasing function of Rd, then Eq. (33) represents a lower bound on
the performance of the synchronizer at any SNR.

Figure 3 is a plot of the squaring loss as determined from the exact expression of Eq. (26) versus Rd
with p as a parameter. While we recognize that for any given form of data detector p will be a function
of Rd, we have chosen to maintain p as a constant parameter in this figure. The reason for this is that
the results presented there can then be independent of the specific form of data detector or, equivalently,
the specific form of error correction coding employed, provided that the conditions for an i.i.d and noise-
dependent error sequence are still met. For any given coding application, only a single point on each curve
of constant p would be applicable, namely, the one corresponding to the given error rate behavior of the
data detector (decoder) and, thus, the performance for that particular application would be illustrated
by a single curve passing through this series of points. With this interpretation in mind, we note that the
curve labeled p = 0.5 corresponds to the in-phase arm nonlinearity fp(x) = tanhx and, as such, agrees
with the squaring-loss behavior performance of the MAP carrier synchronization structure of uncoded
BPSK modulation. For purpose of illustration only, we also include in Fig. 3 curves corresponding to the
conventional Costas loop and polarity-type Costas loop for uncoded BPSK with squaring losses given by
Eq. (32) for the former and

SL = erf 2
√
Rd (34)

for the latter. Finally, we note that for improvement to take place in the carrier synchronizer, the data
estimator is not required to operate with symbol error probabilities as small as those typically needed
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for reliable communication. In fact, a value of p = 0.1, which might be unacceptable for telemetry
applications, can result in dramatic improvement in carrier synchronization performance when used in
the manner illustrated in Fig. 1.

V. Sensitivity to Mismatch

Having improved the phase tracking by the use of data feedback, the new improved carrier phase
estimate will help the data detector obtain better symbol estimates, which suggests an iterative procedure.
That is, the phase tracking loop is initially designed assuming a value of p corresponding to no feedback.
The initial data estimates obtained using this particular structure as a carrier synchronizer are fed back,
and the carrier synchronizer structure is then modified based on the new estimated value of p. This
updated carrier synchronizer provides improved phase tracking, which in turn provides improved data
detection. These new data estimates, having a smaller value of p, are then fed back to the input of
the carrier synchronizer, and the iteration continues. Thus, in practice, at any given time instant there
will be a mismatch between the true value of p associated with the input error sequence {ek} and its
estimate, p̂, used to implement the nonlinearity of Eq. (15) in the loop. As such, we wish to investigate
the sensitivity of the loop performance as measured by the squaring loss to mismatch between p and p̂.
That is, how good must our estimate of p be for the purpose of loop implementation and yet still achieve
an improvement in performance relative to not implementing decision feedback at all?

We begin this discussion by quickly recognizing that when p and p̂ are unequal, the squaring loss
expression of Eq. (26) is modified to

SL =

[
(1− p)fp̂

(
2Rd −

√
2RdX2

)X2 − pfp̂
(
−2Rd +

√
2RdX2

)X2
]2

(1− p)f2
p̂

(
2Rd −

√
2RdX2

)X2
+ pf2

p̂

(
−2Rd +

√
2RdX2

)X2
(35)
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where fp̂ (x) is given by Eq. (15) with p replaced by p̂. The first point to observe is that for p̂ = 0.5,
fp̂(x) = tanhx, which is an odd function of x; hence, the second average in the numerator of Eq. (35)
is the negative of the first average, and the two averages in the denominator of Eq. (35) are equal. As
a result of these observations, for this case the squaring loss becomes independent of p. That is, if we
assume p̂ = 0.5 for the loop design, then the performance is independent of the true input probabilities.
Next, suppose that we are optimistic in our estimate of p used for the design of the loop, i.e., p̂ ≤ p.
Figures 4(a) and (b) are plots of the squaring loss as determined from Eq. (35) versus Rd with p̂ as a
parameter and p = 0.01 and p = 0.1, respectively. The deviation between p and p̂ is as much as a factor
of 5. We see that for this case the performance of the loop is quite insensitive to the mismatch and yet we
still obtain a significant improvement relative to the case of no feedback at all. Figures 5(a) and (b) show
the analogous results for the case where we are pessimistic in our estimate of p used for the design of the
loop, i.e., p̂ ≥ p. Here, we see a good deal more sensitivity to the mismatch of the loop performance to
the mismatch between p and p̂, but always doing as well as or better than the case of no feedback at all.

VI. Relation to Other Structures Motivated by ML Considerations

Suppose that at the outset we had postulated a received signal y(t) consisting of the sum of AWGN
and a random binary data source with dependent data symbols, such as that output from a convolutional
encoder, biphase modulated on a carrier. Based on an observation of y(t) over K symbols and the
assumption of a uniformly distributed unknown carrier phase θ, the MAP estimate of this phase is
still that value θ̂MAP that maximizes p (y(t)|θ). In computing p (y(t)|θ) for the i.i.d. data source case,
as in Section II, we first obtained the conditional probability p (y(t)|θ,a), where a is the vector of K
transmitted data symbols and then averaged over the probability density function (pdf) of a. For an
i.i.d. data source as assumed in Section II (there the data source actually corresponds to the error
sequence), this averaging over the data sequence, i.e., computing the average-likelihood ratio (ALR), can
be performed symbol by symbol which, for binary data, results in a likelihood ratio (LR) in the form
of a K-fold product of hyperbolic cosine functions [see Eq. (10)]. Taking the natural logarithm of this
LR (which turns the product into a sum of “ln cosh” functions), and then differentiating with respect
to the unknown parameter to find its maximum, results in the well-known MAP estimation loop with
hyperbolic tangent nonlinearity (derivative of the “ln cosh” function) in its in-phase arm and a K-symbol
accumulator following the I-Q multiplier.

When the data source is not i.i.d., then computation of the ALR by averaging p (y(t)|θ,a) over a
cannot be performed symbol by symbol. Instead, the average must be computed over all 2K possible
data sequences, which for large K results in an estimation structure with high complexity. Furthermore,
since this average cannot be written in the form of a K-fold product, then the advantage obtained by
taking the natural logarithm of the ALR before differentiating is now lost [5]. Another possibility for
obtaining a carrier phase estimator is first to maximize p (y(t)|θ,a) over a, resulting in the ML estimate of
the data sequence âML, and then to substitute this estimate into p (y(t)|θ,a) before maximizing over the
carrier phase θ. Although this maximum-likelihood ratio (MLR) approach is suboptimum (since it does
not result in maximization of the true LR p (y(t)|θ) with respect to θ), it nevertheless often produces an
estimator whose performance is comparable with that obtained from the ALR approach. A closed-loop
structure resulting from the MLR approach to carrier phase estimation is suggested in [5] and repeated
here in Fig. 6 for clarity of this presentation. We observe that, in principle, the structure requires a
maximum-likelihood sequence estimator (MLSE) in its in-phase arm prior to multiplication by the appro-
priate quadrature arm signal. An approximation of this vector decision feedback type of implementation
that leads to a simplification in structure can be obtained in, for example, a convolutionally coded system
wherein the MLSE is implemented as a Viterbi decoder that outputs symbol-by-symbol decisions after
a suitable delay. Using these decisions to multiply the corresponding delayed (by the amount of the
decoder delay) symbol-by-symbol output of the quadrature arm, one obtains a structure that resembles
a polarity-type I-Q Costas loop, wherein the matched filter/hard limiter data detector combination in
the in-phase arm is replaced by a Viterbi decoder. An analysis of the tracking performance of such a
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Fig. 6.  Closed-loop carrier synchronizer motivated by MLR theory for coded BPSK,
where {ai (t )} is a data waveform corresponding to data vector a i.

structure is straightforward and follows along the lines of that for an uncoded BPSK I-Q loop with a
hard-limited in-phase arm whose squaring loss is given by Eq. (34). Suffice it to say that the analogous
result to Eq. (34) for the above-mentioned I-Q structure with a Viterbi decoder in its in-phase arm is
easily shown to be

SL = (1− 2p)2 (36)

where p is the symbol-error probability performance of the Viterbi decoder under ideal conditions, i.e.,
with zero phase error. Comparing Eq. (36) with Eq. (33) and keeping in mind the monotonically increasing
nature of SL with Rd, we conclude that for any Rd ≥ 0, the information-reduced carrier synchronizer
performs at least as well as (and often much better than) the scheme motivated by MLR considerations.
The advantage of the MLR scheme, however, is that it can be implemented without the receiver having
specific knowledge of p. We hasten to add that all schemes involving coded decision feedback of one form
or another suffer from the potential instability brought about by the decoder delay introduced into the
loop.

VII. Conclusions

A new type of iterative carrier-synchronization loop, designed for coded BPSK applications operating
at low symbol SNR, has been described and analyzed. Using symbol estimates in a feedback configura-
tion to reduce data transitions at the input of the tracking loop, the new structure achieves significant
improvements in tracking threshold over conventional I-Q loops. It was shown that very accurate sym-
bol estimates were not required to achieve significant improvements in low SNR tracking threshold or,
equivalently, operation with greatly reduced phase error: a data detector operating at a symbol-error
probability of 0.1 can, at low SNR, affect as much as a 7-dB reduction in squaring loss for BPSK signals.
This means that the new carrier synchronization loop can operate effectively at signal levels that might
be too low for a conventional I-Q loop to even lock. Another desirable feature of this new structure is
that once phase locked, the improved phase estimates can be transferred to the data detector, yielding
improved symbol estimates for feedback, thus achieving even better phase tracking; this kind of iterative
implementation eventually could lead to a virtual elimination of squaring loss, hence approaching the
tracking performance of a phase-locked loop operating on an unmodulated tone.

We conclude by noting several other scenarios where the use of information reduction can be used to
improve tracking-loop performance. First, we point out that even though we have explicitly addressed
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the carrier synchronization problem, the technique is equally applicable at the subcarrier level in residual
carrier systems that employ suppressed subcarriers. Second, in systems that employ nonsuppressed
carriers, i.e., the transmitted signal is a combination of a residual and suppressed-carrier signals, the MAP
estimation procedure suggests a so-called hybrid loop [6], which is a weighted superposition of a PLL and a
Costas loop. Here again, information reduction can be used to improve the performance of the suppressed-
carrier portion (Costas loop) of the overall loop. Finally, the extension of the information-reduction
concept to quadriphase-shift-keyed (QPSK) modulation is straightforward and results in even larger
performance gains because of the inherently larger “squaring” (actually, fourth-order) losses associated
with such a modulation.
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Appendix
Iterative Information-Reduced Carrier Synchronization

of Uncoded BPSK

In this appendix, we apply the notion of iterative information reduction to the problem of carrier
synchronization of uncoded BPSK. In particular, for a rectangular pulse stream i.i.d. data-modulation
biphase modulated on a carrier (i.e., uncoded BPSK), we consider the specific implementation of Fig. 1
illustrated in Fig. A-1. Here the data detector of Fig. 1 is a matched (integrate-and-dump) filter followed
by a hard decision device and sample-and-hold circuit. Rather than model the product of the data
decision and input data sequences as an error sequence with statistics as in Eq. (8), we instead allow
these two sequences to maintain their separate identities so as to expose the all-important correlation of
the former with the input noise in the corresponding transmission intervals.

Fig. A-1.  Information-reduced carrier synchronization loop for uncoded modulation.
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Letting y(t) denote the total received signal [i.e., the sum of Eqs. (1) and (2)], then analogous to the
beginning of Section III, we can write the I and Q sample-and-hold outputs (again assuming Km = 1 for
convenience) as

zck
4=
∫ (k+2)T

(k+1)T

y(t− T )rc(t)dt =
2
√
S

N0

[
T
√
Sdkd̂k sinφ− d̂kNsk sinφ+ d̂kNck cosφ

]

zsk
4=
∫ (k+2)T

(k+1)T

y(t− T )rs(t)dt =
2
√
S

N0

[
T
√
Sdkd̂k cosφ− d̂kNck sinφ− d̂kNsk cosφ

]
;

(k + 2)T ≤ t ≤ (k + 3)T


(A-1)
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where, similar to before, Nck and Nsk are zero-mean, independent Gaussian random variables (r.v.’s)
with variance σ2

Nck
= σ2

Nsk
= N0T/2

4= σ2 and now

d̂k = sgn
[
T
√
Sdk cosφ−Nck sinφ−Nsk cosφ

]
(A-2)

Note that d̂k depends on Nck and Nsk, which are the identical noise variables by which d̂k is multiplied
in Eq. (A-1). Thus, unlike the main text, it is no longer appropriate to characterize the r.v.’s d̂kNsk and
d̂kNck as Gaussian. Nevertheless, it is convenient to assign a notation to these r.v.’s, namely,

Msk
4= d̂kNsk = Nsk sgn

[
T
√
Sdk cosφ−Nck sinφ−Nsk cosφ

]

Mck
4= d̂kNck = Nck sgn

[
T
√
Sdk cosφ−Nck sinφ−Nsk cosφ

]
 (A-3)

The output of the I-Q multiplier in Fig. 2, i.e., the error signal in the same transmission interval, is given
by

z0k
4= zckfp (zsk) =

[
(2Rd) dkd̂k sinφ− 2

√
S

N0
Msk sinφ+

2
√
S

N0
Mck cosφ

]

× fp
(

(2Rd) dkd̂k cosφ− 2
√
S

N0
Mck sinφ− 2

√
S

N0
Msk cosφ

)
(A-4)

Renormalizing as in Section II, we rewrite Eq. (A-4) as

z0k =
[
(2Rd) dkd̂k sinφ−

√
2RdYsk sinφ+

√
2RdYck cosφ

]

× fp
(
(2Rd) dkd̂k cosφ−

√
2RdYck sinφ−

√
2RdYsk cosφ

)
(A-5)

where

d̂k = sgn
[√

2Rddk cosφ−Xck sinφ−Xsk cosφ
]

(A-6)

with normalized (unit variance) independent Gaussian noise r.v.’s Xsk
4= Nsk/σ, Xck

4= Nck/σ, and

Ysk
4= d̂kXsk = Xsk sgn

[√
2Rddk cosφ−Xck sinφ−Xsk cosφ

]

Yck
4= d̂kXck = Xck sgn

[√
2Rddk cosφ−Xck sinφ−Xsk cosφ

]
 (A-7)

The normalized S-curve is defined, analogous to Eq. (19), by
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η(φ) =
(
2Rddkd̂k sinφ

)
fp

(
2Rddkd̂k cosφ−

√
2RdYck sinφ−

√
2RdYsk cosφ

)Xsk,Xck,dk
(A-8)

with slope at the origin

Kη =
dη(φ)
dφ

|φ=0 =
(
2Rddkd̂

′
k

)
fp

(
2Rddkd̂k −

√
2RdY

′
sk

)Ysk,Yck,dk
(A-9)

where

d̂
′

k
4= d̂k

∣∣∣
φ=0

= sgn
[√

2Rddk −Xsk

]
= sgn

[
2Rddk −

√
2RdXsk

]

Y
′

sk
4= Ysk|φ=0 = Xsk sgn

[√
2Rddk −Xsk

]
= Xsk sgn

[
2Rddk −

√
2RdXsk

]
 (A-10)

Using Eq. (A-10) in Eq. (A-9), we obtain, after some simplification,

Kη = 2Rd sgn
[
2Rd −

√
2RdX

]
fp

(∣∣∣2Rd −√2RdX
∣∣∣)X (A-11)

where X is a zero-mean, unit variance Gaussian r.v.

The noise component of z0k evaluated at φ = 0 is

Ne(t) =
√

2RdY
′

ckfp

(
2Rddkd̂

′

k −
√

2RdY
′

sk

)
(A-12)

where, analogous to the second equation in Eq. (A-10),

Y
′

ck
4= Yck|φ=0 = Xck sgn

[√
2Rddk −Xsk

]
= Xck sgn

[
2Rddk −

√
2RdXsk

]
(A-13)

Note that Y
′

ck is zero mean since Xck and Xsk are independent zero-mean Gaussian r.v.’s. Also,

E
{
Y
′

skY
′

ck

}
= E {XskXck} = 0

E

{(
Y
′

sk

)2
}

= E

{(
Y
′

ck

)2
}

= 1

 (A-14)

Thus, even though Y
′

sk and Y
′

ck are not Gaussian, they are nevertheless uncorrelated (but not necessarily
independent). Fortunately, for our purposes in calculating squaring loss, the uncorrelated property is
sufficient to establish what we wish. Furthermore, in view of the above, Ne (t) is zero mean. Thus, as in
the main text, we can compute the variance of Ne (t) as
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σ2
Ne = 2RdE

{(
Y
′

ck

)2

f2
p

(
2Rddkd̂

′

k −
√

2RdY
′

sk

)}

= 2RdE
{(

Y
′

ck

)2
}
f2
p

(
2Rddkd̂

′
k −

√
2RdY

′
sk

)Xsk,dk

= 2Rdf2
p

(
2Rddkd̂

′
k −

√
2RdY

′
sk

)Xsk,dk

= 2Rdf2
p

(∣∣∣2Rd −√2RdX
∣∣∣)X (A-15)

Finally, the squaring loss is obtained by substituting Eqs. (A-11) and (A-15) in Eq. (25) of the main text,
which results in

SL =

(
sgn

[
2Rd −

√
2RdX

]
fp
(∣∣2Rd −√2RdX

∣∣)X)2

f2
p

(∣∣2Rd −√2RdX
∣∣)X (A-16)

Evaluating Eq. (A-16) at the two extremes of p = 1/2(fp (x) = tanhx) and p = 0(fp (x) = 1) results in
Eqs. (27) and (33) [or equivalently Eq. (34)] of the main text, respectively. What is important to note
is that here, for p = 0, Fig. 2 does not reduce to a PLL but rather to a polarity-type Costas loop! This
occurs because of the full correlation of the data decisions with the additive input noise as discussed in
connection with the definitions of Msk and Mck in Eq. (A-3). For any value of p between the above
two extremes, the squaring-loss performance will lie between the curves corresponding to Eqs. (34) and
(27), which are illustrated numerically in Fig. 3. Thus, in conclusion, the application of the information-
reduction concept to an uncoded BPSK transmission results in no gain relative to conventional carrier
synchronization techniques motivated by MAP theory.
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